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Plane Wave Diffraction by Arb~itrary Gratings
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Abstract—The diffraction of TE- and TM-polarized plane
waves by planar gratings is numerically analyzedl using a com-

bined FEWMOM algorithm based on the generalized network

formulation. The interior region, treate,d using the FEM, is

truncated to a single unit cell with the introduction of an exact
periodic boundary condition, which is enforced as a natural

boundary condition. By employing the finite element method to
compute the fields within the periodic structure, gratings of ar-
bitrary cross section and material composition can be efficiently
modeled.

I. INTRODUCTION

GRATINGS have found a plethora of applications in

many areas of physics and engineering. Some impor-

tant applications include: microwave lenses and polariz-

ers, twist reflector antennas, spectrum analyzers, inte-

grated optical devices, holography, and acoustooptical

devices. Because of their wide usage, the diffraction prop-

erties of gratings have been studied extensively over the

last few decades (see [1] and [2] for extensive bibliogra-

phies). A number of analytical and numerical methods

(both approximate and rigorous) have been used to study

gratings of various compositions. Analytical methods can

only be applied to a limited class of problems, and much

emphasis has been put cm numerical methods. The cou-

pled-wave approach [3] and the coupled-mode [4] ap-

proach have been used to study dielectric gratings. Exten-

sions of these methods have been used to study coated,

perfectly conducting gratings [5]. Integral equation meth-

ods have also been used to study conducting transmission

and reflection gratings [6], [7]. Other rigorous methods

such as the modified residue calculus technique [8], [9]

have also been used extensively to treat perfectly con-

ducting gratings for a number of applications. More re-

cently, the FEM has been used to treat gratings composed

of thick conductors [10], and thick conductors embedded

in an inhomogeneous slab [11], [12]. The advantage of

using the FEM is that inhomogeneom dielectric or mag-

netic materials, as well as conductors of arbitrary cross-
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section can easily be modeled. However, the analyses

presented in [11] and [12] were limited’ to gratings com-

posed of perfect conductors embedded in an inhomoge-

neous slab, where it was assumed that the maximum pro-

file of the perioclic conductors was in a constant plane and

that the material medium above or below the conductors

was homogeneous.

It is the intent of this paper to study gratings that are

composed most] y, or entirely, of penetrable materials us-

ing a combined FEM/MoM algorithm based on the gen-

eralized network formulation [12], [13]. With the use of

equivalent currents, the problem domain is divided into

three regions: 1 and 2) the exterior homogeneous regions

above and below the grating, and 3) the inhomogeneous

interior region. The fields in the exterior region are for-

mulated using the method of moments. In the interior re-

gion, the fields perturbed by the equivalent currents are

computed using the FEM. In order to truncate this region

such that it can be modeled using finite elements, an exact

periodic boundaty condition is introduced. This boundary

condition is enforced as a natural boundary condition, and

preserves the sparsity of the finite element matrix. The

method provided herein is more robust than the methods

presented in [1 1], [12], and is capable of treating a much

larger class of grating problems.

11[. GENERAL FORMULATION

The grating to be studied is assumed to be planar (i.e.,

the dimension clf periodicity is along a Cartesian coordi-

nate axis), composed of isotropic dielectric or magnetic

materials (lossless or lossy), and it also may have con-

ducting materials embedded within it (see Fig. 1). The

material profile is assumed to be inhomogeneous in the

region contained between the y = O and the y = – d

planes. Above the y = O plane, the medium is homoge-

neous with material constants (e~, PA), and similarly, be-

low the y = –d plane, the medium is homogeneous with

material constants (eB, pB). In addition, the profile of the

grating is considered invariant along the longitudinal

z-direction. Therefore, if the grating is illuminated by a

monochromatic plane wave which has no z-variation, the

TE- and TM-polarized fields completely decouple and can

be treated independently.
This problem is analyzed numerically using the gener-

alized network formulation, [12], [13]. The problem space

is divided into three regions: the homogeneous half-spaces
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Fig. 1, Inhomogeneous material grating of unit cell width b illuminated by

a TE- or TM-polarized monochromatic plane wave.

r2 +

@@@@@@cmmc9
x’ -JZ2 (01-MZ2 ) x’+b

(EB , PB )

Fig. 2. Equivalent currents J, (for TM-polarized fields) or M: (for
TE-polarized fields) piaced above and below they = O and they = –d

planes; shown here forasingle unit cell of the grating.

y > O, forming region A;y < –d, forming region l?;and

the interior region C, which contains the periodic struc-

ture. The three regions are decoupled by the introduction

of equivalent currents which are periodically distributed

along x in the y = O (1’1) and the y = –d (rJ planes, as

illustrated in Fig. 2. Subsequently, these planes are re-

placed by PMC (for TM polarization) or PEC (for TE

polarization) planes.

If the grating is illuminated by a TM-polarized plane

wave, the total electric field in the exterior regions can be

expressed as

Etot = E: + ~~t
z (1)

where Ef is the short-circuited electric field due to the

PMC plane (i. e., a superposition of the incident field and
the specular reflection), and E~t is the scattered field pt-o-

duced by the periodic equivalent currents. To enforce the

continuity of the electric field across the r, and the 17z

planes, ET is treated as the electric field induced in the

interior region when it is excited by the equivalent current

sources. In the interior region, the field in the aperture

plane is expressed as

E~ = E~(–Jz,) + E~(+.lz2): on 1’1

E~ = E~(+JZ,) + E~(–.lz,): on r2. (2)

The electric field is then matched across the aperture

planes into the exterior region, resulting in

E; = –E~t(+.lz,) + E~(–Yz,) + E~(+Jz2): on I?l

E; = –E~’(–Jz2) + E~(+.Jz2) + E~(–Jz,): on 17Z.

(3)

Floquet’s theorem states that given a plane wave inci-

dent on a periodic structure, all observable quantities will

have the same periodicity as the structure and will also

have a cell-to-cell phase shift equivalent to that of peri-

odic structure. This phase shift can be expressed as

Jz (x + nzb) = .lZ (x) eJk’mb (4)

where k. is the x-component of the incident field (kX = k

cos 4’) and b is the unit cell width. As a result, the fields

in (3) can be uniquely described by their distribution over

a single unit cell.
The solution of (3) is then obtained using the method

of moments. To this end, the equivalent currents .111and

JZ2 are expanded into a series of basis functions weighted

by unknown constant coefficients. Within a unit cell of

the structure, the approximate currents are expressed as

N P

Jz,(x) = ~~[ Kn~n(X) ; JZ2(X) = ~~, Kp~p(X) . (5)

A matrix expression is then derived through the inner

product of the functional in (3), expressed as a function

of the approximate currents, and a set of testing functions

Tk (on rl) and Tq (on 17~). Making use of the linearity of

the operators, this inner product can be expressed as

E:]=r%’[iiltj+’zctj“)

where the matrix blocks [2A ] and [ZB ] represent the ex-

terior and [Z= ] represents the interior impedance matrices

of the surfaces r 1 and 1’2 over a unit cell. For the

TE-polarized case, a dual expression can be derived

K:l=K][:.lltl+’yc’tl“)
where [Y~ ] and [YB ] represent the exterior and [Yc] rep-

resents the interior admittance matrices of the surfaces r,

and 1’2 over a unit cell.

III. CONSTRUCTING THE EXTERIOR IMPEDANCE

(ADMITTANCE) MATRICES

The exterior impedance matrices [2A] and [ZB] (or the

exterior admittance matrices [ Y~ ] and [ YB ] ) are con-

structed through the inner product of the approximate

scattered field with the set of testing functions. The scat-

tered field can be expressed as a superposition of the fields

produced by the periodic distribution of equivalent cur-

rents. Therefore, using (4)

“ (k~(x - X) - nzb)2 + (y - y’)2)dX’.

(8)

From Poisson’s theorem [14], it can be shown that
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i’ .J’’~’+H$)(k/(x-x’-mb)l)
~.—ca
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b ~= -W 2j~vM

where

/3X. =~+kX

(9)

(lo)

and

[

~ . mm, (k2 > &)
ym (11)

–j-, (lc2 < B:m)”

Using (9)–(11), (8) can fhen reexpressed as

where jz ( /3Xm)is the Fourier transform of .lC(x), and y =

Y’.
The equivalent current is expanded into a set of triangle

functions, as in (5). Then th basis function centered about

x = Xn is expressed as

‘[
Jx -x./

–Asx<xn+A

B.(x) = A ‘ ‘n

o, else

(13)

and has the Fourier transform

The distribution of N triangle functions spans one unit cell

of the I’1 plane, as illustrated in Fig. 3, and P triangle

functions span one unit cell of the rz plane. The triangle

functions are assumed to be evenly distributed and each

has a half-width of A (this is not a necessary condition,

but it is assumed for computational efficiency). It is ob-

served that the basis function centered, about x = x‘ over-

laps into the adjacent cell. This function is referred to as

the continuity basis function, and ensures the continuity

of the fields across the planes separating the unit cells.

The testing functions are chosen to be identical to the

basis functions. By making use of (12), the k, n th term

of the exterior impedance matrices [Z~ ] and [Z~ ] can be

computed by the inner product

~ ‘J 6wI(W – xk) (15)

where k is the wave number, q is the characteristic wave

impedance of the half-space, and DX,Rand /3y~ are defined

continuity
basis function

,

Ad
Ill. .

x’-A x’ x“+A
+1

x’+b PMC (or PEC)

Fig. 3. Triangular basis functions spanning {x e (x ‘-,x‘ + b)} on r,. The
continuity basis function overlaps into the adjacent unit cell.

by (10) and(11 ). Equation (15) represents a TM-polarized

incident wave. By duality, for a TE-polarized incident

wave, the k, rzth term of the exterior admittance matrices

[Y~ ] or [Y~] can be computed from the inner product

These series converge rapidly, since the summand decays

asymptotically as 1/m 5. For this choice of basis func-

tions, the summands of the series in (15) and (16) are

dependent only upon the separation between the centers

of the n th and the kth basis functions. Since the basis

functions have been uniformly distributed, (x. – XJ =

A(n – k). As a result, the entire admittance or impedance

matrix can be constructed by only computing the elements

of the first row of the matrix. This reduces the computa-

tional task from N2 processes to N.

IV. INCORPORATING THE PERIODIC BOUNDARY

CONDITION TO CONSTRUCT THE INTERIOR IMPEDANCE

(ADMITTANCE) MATRIX

The interior impedance (admittance) matrix is con-

structed by perturbing the interior region ( –d < y < O)

with each of the equivalent current basis functions, fol-

lowed by the inner product of the induced aperture fields

and a set of testing functions. Computation of the fields

within the interior region using the FEM is the desired

objective. However, the problem domain is not confined

to a close region, as it was for the problems considered in

[1 1], [12]. Rather, it spans the entire space {x e [– co,

+ m] }. By taking advantage of the periodicity of the

problem, a periodic boundary condition can be introduced

that confines the problem domain to the unit cell. This is

presented in this section.

Define the dc)main Q‘ to be the domain of a single unit

cell of the peric~dic structure

{fl’: x= (X’, X’ + b), y G (-d, O)}. (17)

The unit cell domain is bound by the contour r’, which

includes the surfaces of any nonpenetrable conducting

material 17P,the 17; and IT; planes, and the periodic bound-

aries I’~ and rh!, as illustrated in Fig. 4. It is noted that

even though the boundaries I’~ and rR are assumed to be

planar, this is not a necessary condition, and in fact, the

side boundaries of the unit cell may be nonplanar.
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Fig. 4. The unit cell domain Q’, enclosed by the contour r’ = r; + r; +

r~ + r~ ~ rP.

The fields within Q‘ must satisfy the scalar Helmholtz

wave equation

where ~ = E? for TM-polarized fields, with a dual

expression applicable for TE-polarized fields. In the above

expression, it is assumed that ~, and p, have a spatial vari-

ation. Following the Galerkin method, the inner product

(defined over the domain 0’) of (18) with a testing func-

tion ~ results in the expression

!![
**V . 1~v++~r&@*~dfl’ = 0. (19)

0’
Pr

The unit cell domain Q‘ is then partitioned into N, ele-

ment domains QC, and within each element domain,

~(span Q,) = ~, and @(span Q,) = @,. As a result, (19)

is expressed as a superposition of inner products within

all the element domains Qe as

Implementing the first form of Green’s theorem leads to

(21)

where I’, is the contour enclosing the element domain 0,

and n is along the direction of the outward normal at po-

sition 1 on I’,. Equation (21) is the discretized form of the

weak form equation.

To this point, the field and the testing functions have

been assumed to be arbitrary. However, for a valid solu-

tion of (21) both functions must belong to the functional

space

A = {~1+ e Co; 4(x + mb, y) = ~(x, y) ejk-rrnb. (22)

Due to the periodic nature of the source, the functional

space is assumed to be composed of fields that have pe-

riodic distributions along the x-direction with a cell-to-

cell phase shift of ejkrb, as specified by (4). However, from

Floquet’s theorem, all observable quantities have this

phase shift. Therefore, the dual field is also periodic and

from Maxwell’s curl equation it can be stated that

4 x V+(X’ + mb, y) = ii x V~(x’, y)ejk’mb. (23)

Maxwell’s equations require that the tangential com-

ponents of the electric and magnetic fields must be con-

tinuous across all boundaries. The scalar 4 represents the

tangential component of the electric (or magnetic) field

and is continuous across all boundaries from (22). The

continuity of the tangential component of the electric (or

magnetic) field is enforced in a weak sense by setting the

line integral appearing in (21) to zero when I’. is a bound-

ary shared between two element domains. Nonshared

boundaries lie on the boundary 17’, which encloses the unit

cell domain Q‘. As a result, (21) can be expressed as

N,cpp~, 1 \

(24)

where ~b C {I).) and ~b C {~=}, and Nb k the number

of element domains with edges on r‘. For TM-polarized

fields, the Dirichlet boundary condition ~ = O is enforced

on the surface of a PEC, and the Neumann boundary con-

dition d$/3n = O is satisfied in a weak sense on a PMC.

For TE-polarized fields, a Neumann boundary condition

is satisfied in a weak sense on the surface of a PEC.

Therefore, on the boundaries r; and r~, the contribution

of the integral is zero, except in the presence of the equiv-

alent current source, where

3$/iYz = jupJz (or 3$/th = jo.wllz) (25)

for TM (or TE) polarization.

It still remains to evaluate the contour integration over

the periodic boundaries r~ and r~. The periodic bounda-

ries which truncate the problem domain to a single unit

cell can be thought of as boundaries separating adjacent

unit cells. However, since the electric and magnetic fields

must be continuous across these boundaries, the contri-

bution of the line integral over r~ and 17~ must be zero.

This can be shown explicitly by exploiting the periodic

nature of the fields.

The line integral over r~ and r~ is expressed as

where fi is the outward normal on I’~ and r& Therefore,

from (22) and (23), respectively, it can be stated that

cII*(x’ + b, y)lr, = @*(x’, y)e ‘~k’blr~ (27)

and

A X V~(X’ + b, y)lrR = ii X V~(X’ + b, y)ej~XblrL.

(28)
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Inserting the expressions in (27) and (28) into (26) and

choosing the appropriate normal vectors, this results in a

natural boundary condition

~
‘+*A X V$dl~+

!
&i X V#dl~ = O.

rL /%’ rR /&.

(29)

Physically, (29) implies that the electric and magnetic

fields are continuous across the periodicboundaries from

unit cell to unit cell. It also implies that the total time-

average power leaving the unit cell along the periodic

boundaries is zero. Furthermore, it satisfies the periodic

boundary condition of the electric and magnetic fields in

a weak sense. However, since + must satisfy the periodic

boundary condition in a strict sense, it is still necessary

to enforce (27) and the periodic condition in (22) as Dir-

ichlet boundary conditions in (24).

The fields within each element domain are then ex-

panded into trial functions weighted by unknown coeffi-

cients, with the simplest being first-order nodal elements

(linear interpolate functions), where

Employing a global numbering scheme by enforcing the

continuity of the fields across shared boundaries, (25) is

expressed as a linear operator

(31)

where u i is the vector of constant coefficients weighting

the interior nodal elements (including r, and rz), (v’ )~ is

the transpose conjugate of v‘, and u ~ and u ~ are the vec-

tors of the constant weighting coefficients of the nodes

lying on I’~ and I’~, respectively. From the periodic

boundary conditions,

R_u– u ‘ejk’b (32)

and

(vR)~ = (uL)~e ‘jk’b. (33)

Equations (32) and (33) are then enforced in a strict sense
in (31).

The solution of the weak form equation is then found

by evaluating the first variation of the linear functional

with respect to {u} at a stationary point. This results in

the sparse linear system of equations:

(A ‘i

)()

AiL + AtRe +jk.,b ~i

/4Li + ARfe-jk,b A~~ + ARR UL

(34)

On the right-hand side of this expression, J: is a vector

computed via tlhe contour integral in (25) and is only non-

zero in the planes r j and 17j when the edge of an interior

nodal element, corresponding to node (vi )~, overlaps the

support of the equivalent current basis function. A similar

statement can be made for J: and J;.

Equation (34.) is a sparse linear system of equations. If

the material medium within 0 is lossless, then the sparse

matrix is Hermitian. Exploiting this property leads to a

savings in computational time and storage, and also re-

sults in a more stable factorization of the matrix. If the

material medium is lossy, the matrix is nonHermitian,

however, savir~gs in computational time and storage can

still be realized by taking advantage of the symmetry of

the large matrix block A”.

The equivalent basis function set within a unit cell is

given by (13) and is illustrated in Fig. 3. The interior

region is perturbed by each basis function, and the fields

within a single unit cell are solved using (34). Since only

the right-hand side is changed by the excitation, the sparse

matrix may be computed and factored once. Subse-

quently, the fields within Q‘ can be derived for each

equivalent current basis function, and the impedance ma-

trix [Zc] (or admittance matrix [Yc]) can be constructed.

V. NUMERICAL RESULTS

The previou~s algorithm has been incorporated into a

computer program for the Convex C240 computer. First-

order nodal elements were used to model the scalar elec-

tric or magnetic field within the cavity region. Typically,

400 elements per X2 were used. The sparse linear system

of equations representing the interior problem was solved

using the YSMP package [15], which is based on the min-

imum-degree ordering algorithm. It is noted that by in-

corporating the periodic boundary condition into (31 ), ad-

ditional coupling between elements is encountered.

However, this had little effect on the time required to fac-

torize the matrix. The equivalent current basis function

set that was used is the triangular basis set in (13). Ap-

proximately eight basis functions per A over the exterior

surfaces of a urlit cell are necessary for convergence to an

accurate solution. The aperture impedance (or admit-

tance) matrices are then constructed, resulting in a small

dense linear system of equations.

Once the approximate equivalent currents are com-

puted, the time-averaged reflected and transmitted powers
normal to the plane of the grating of the nrth harmonic are

computed. The accuracy of the approximate solution can

be verified by the conservation of power. This is a nec-

essary condition, but not sufficient. Nevertheless, once

the code is validated, it provides confidence in the ap-
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Fig. 5, Thick PEC grating embedded in a dielectric slab

proximate solution when treating a noncanonical prob-

lem,

For validation purposes, the case of the scattering by a

thick strip grating is first studied. Consider the thick PEC

grating illustrated in Fig. 5. The grating is assumed to be

embedded in a dielectric slab, with a thickness greater

than that of the PEC grating. The material medium above

and below the slab is assumed to be free space. Initially,

the relative permittivity of the dielectric slab is chosen to

be one, such that the PEC grating is effectively situated

in free space. This problem was also studied by Gedney

and Mitta in [12]. Fig. 6 illustrates the normalized re-

flected powers of the propagating harmonics versus fre-

quency (represented as b/hO) when the PEC grating is

illuminated by a normally incident TM-polarized plane

wave. (The normalized power is the time-averaged power

in the normal direction of the mth harmonic normalized

by the normal time-averaged power of the incident field.)

The grating has a unit cell width b and a separation of

a = 0.6 b between the PEC cylinders of thickness d =

0.4 b. The r, and r~ planes are placed a distance of 0.1

b above and below the PEC surface. In the problem, re-

sults were computed using the current method and were

compared with those computed via the method presented

in [12], which places the r I and r2 on the surface of the

PEC conductors. These results compare extremely well

for all the propagating harmonics. The results were also

verified for other angles of incidence and for the

TE-polarized case, establishing confidence in the method

and the computer code.

Next, the case in which the thick PEC grating is situ-

ated in a homogeneous dielectric slab is considered. For

the case when ~, = 2.56, Figs. 7 and 8 illustrate the nor-

malized reflected and transmitted powers, respectively,

when the grating is illuminated by a normally incident

TM-polarized plane wave. The dimensions of the con-

ductors are the same as those considered in the previous

case. The grating is almost purely reflecting at low fre-

quencies (i. e., when the unit cell width is small compared

to a wavelength). However, due to the presence of the

dielectric slab, the surface becomes highly transmitting at

a frequency well below the first Wood’s anomaly, which

occurs when b /AO = 1.0. Since the TMO, ~ mode does not

propagate, if the slab is removed, this transition will take

place at the Wood’s anomaly, as is observed in Fig. 6.

The problem illustrated in Fig. 5 can also be considered

1.0,

P,
0.8- — a.(m = o)

— b.(m=O)
— c.(m=OJ

— d.(m=OJ

0.6-

~E
0.4 - — a. (m. -I, +1)

— c. (m = -1,+1)
0.2- — d. (m= -1,+1)

0.0
0.00 0.25 0.50 0,75 1.00 1.25 1.50 1.75 2.00

Fig. 6. Normalized power due to a TM-polarized incident plane wave on

a thick grating (o’ = 90°, c, = 1.0, d = 0.4 b, a = 0.6 b, /rl = h2 = 0.1

b). Case a: P,m computed via FEM/MoM method outlined in [12]; Case b:
P,,,, computed via present method; Case c: P,,,, computed via method out-
lined in [12]; Case d: F’,~ computed via present method.

1.0,

0.8:
TM

— m=o

0.6:
— m=.l, +l

&&E (3,4:

0.2:

0.0; . . . . . . . . . . . . . . .

0.00 0.25 0.50 0.75 1.00 1.25 1:50 1.75 2.00

bliio

Fig. 7. Normalized reflected power due to a TM-polarized incident plane
wave on a thick grating (~’ = 90°, e. = 2.56, d = 0.4 b, a = 0.6 b, h,

=h2=0.1 b).

1.0-

0.8-

~ 0.6-

.&U 0.4-

0.2-
— 111.o
— m.-l, +l

0.0- >
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

blAo

Fig. 8. Normalized transmitted power due to a TM-polarized incident plane
wave on a thick grating (~’ = 90°, e, = 2.56, d = 0.4 b, a = 0.6 b, h,

=h2=0.1 b).
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d

~-l
b

Fig. 9. PECcross gratinlg imbedded inahomogeneous dielectric s1ab.

using themethod presented in [12], assuming that thedi-

electric slab is hom~ogeneous above and below the con-

ductors. Inorder totreat this problem, the Green’s func-

tion can be readily expressed in the spectral domain.

However, special attention must be given to the branch-

point singularities tlhat are inherent to this Green’s func-

tion when performing the numerical integration. The ad-
vantage of treating the problem using the current method

is that the exterior problem can be assumed to be a ho-

mogeneous half-space. The Green’s function is easily

handled here and is more computationally efficient. Fur-

thermore, the case of an inhomogeneous slab above or

below the conductors can easily be studied using the cur-

rent method.

With the use of the finite elements, the conductors can

be of arbitrary cross section such as the grating in Fig. 9,

which is composed of PEC crosses imbedded in a homo-

geneous dielectric slab. It is assumed that the slab has a

thickness d = 0.5 b,, and a relative permittivity e, = 2.56.

The crosses have a iheight of 0.5 b, and a width of 0.5 b,

and the thickness of the arms is assumed to be 0.1 b. Figs.

10 and 11 illustrate the normalized reflected powers of the

propagating harmonics versus frequency when the cross

grating is illuminated by TM- and TE-polarized plane

waves, respectively, with angle of incidence 4‘ = 600.

The second class of problems considered are dielectric

gratings that are composed entir~ly of perfect dielectrics.

Consider the grating illustrated in Fig. 12, which consists

of square dielectric rods with permittivity e2 periodically

distributed within a planar dielectric slab of permittivity

~1. The dielectric slab is assumed to be homogeneous with

permittivity e, = 2.0 CO. The normalized transmitted

power versus frequency (represented as b/Ao) of this

grating illuminated by normally incident TM- and

TM-polarized plane waves is illustrated in Figs. 13 and

14, respectively. Initially consider case a., when the di-

electric rods have permittivities of C2 = 2.4 CO. At low

frequencies, the response appears to be that of a homo-

geneous slab, and the grating is highly transmitting. How-

ever, due to the periodic distribution of the dielectric rods,

the grating becomes highly reflective within a small band

of frequencies. Due to the low contrast between the rods

and the slab, the bandwidth of these notches in the trans-

mitted power is extremely small, as illustrated in Figs. 13

and 14. Therefore, this grating is highly frequency-selec-

tive. Increasing the relative permittivity of the dielectric

rods results in the broadening of the bandwidth of the

notches in the transmitted power, as demonstrated by case

b., when e2 = 4.0 (!O. Here, it is observed that the band-
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Fig. 10. Normalized reflected power due to a cross grating illuminated by
a TM-polarized plane waves (e, =2.56, d=0.75b, t =O.lb, w=O.5
b, h = 0.5 b, I#J’ = 600).
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Fig. 11. Normalized reflected power due to a cross grating illuminated by

a TE-polarized plane wave (e, = 2.56, d = 0.75 b, t = 0.1 b, w = 0.5 b,
h = 0.5 b, c)’ = 600).
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Fig. 12. Dielectric slab grating.
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Fig. 13. Normalized transmitted power due to a dielectric’slab grating il-
luminated by a TM-polarized plane wave (cl = 2.0 q), +’ = 900). Case a:

eZ = 2.4 ed. Case b: 62 = 4.o CO.

widths of the regions of high reflectivity have broadened.
Furthermore, by increasing the contrast between the two

dielectrics, the frequencies at which the surface becomes

almost totally reflecting are lowered, and additional bands

are introduced before the first resonance of the periodic

stracture.
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VI. SUMMARY

This paper has focused on the numerical anlysis of the

diffraction of electromagnetic plane waves by arbitrary

gratings. The gratings are assumed to be composed of in-

homogeneous isotropic dielectric or magnetic materials,

which may have conducting materials periodically distrib-

uted within them. The numerical method employed for

the analysis was the combined FEM/MoM solution, which

is based on the generalized network formulation. Due to

the properties of the grating, the interior cavity region is

infinite in extent. However, with the introduction of a pe-

riodic boundary condition, the interior problem domain

was reduced to that of a single unit cell. The advantage

of this formulation is that the sparsity of the interior finite

element matrix is preserved, and with the use of direct

methods of solution, the construction of the interior

impedance (admittance) matrices can be performed quite

efficiently.

A number of examples of gratings composed of piece-

wise homogeneous materials were presented in order to

validate the method and to illustrate the types of problems

that can be treated with this method. However, due to the

robustness of the combined FEM/MoM solution, many

other classes of problems may be considered. For exam-

ple, problems for which the profile of the material con-

stants and/or the surface profile of the grating are modu-

lated is of great interest and can be studied using this

method. Furthermore, gratings with higher degrees of in-

homogeneity can also be studied with little additional

computational cost.

“Yale sparse matrix package. 1: The symmetric codes, ” Inter. J

Numerical Methods in Engineering, vol. 18, pp. 1145-1151, 1982.
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