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A Combined FEM/MoM Approach to Analyze the
Plane Wave Diffraction by Arbitrary Gratings

Stephen D. Gedney, Member, IEEE, Jin Fa Lee, Member, IEEE, and Raj Mittra, Fellow, IEEE

Abstract—The diffraction of TE- and TM-polarized plane
waves by planar gratings is numerically analyzed using a com-
bined FEM/MoM algorithm based on the generalized network
formulation. The interior region, treated using the FEM, is
truncated to a single unit cell with the introduction of an exact
periodic boundary condition, which is enforced as a natural
boundary condition. By employing the finite element method to
compute the fields within the periodic structure, gratings of ar-
bitrary cross section and material composition can be efficiently
modeled.

1. INTRODUCTION

RATINGS have found a plethora of applications in

many areas of physics and engineering. Some impor-
tant applications include: microwave lenses and polariz-
ers, twist reflector antennas, spectrum analyzers, inte-
grated optical devices, holography, and acoustooptical
devices. Because of their wide usage, the diffraction prop-
erties of gratings have been studied extensively over the
last few decades (see [1] and [2] for extensive bibliogra-
phies). A number of analytical and numerical methods
(both approximate and rigorous) have been used to study
gratings of various compositions. Analytical methods can
only be applied to a limited class of problems, and much
emphasis has been put on numerical methods. The cou-
pled-wave approach [3] and the coupled-mode [4] ap-
proach have been used to study dielectric gratings. Exten-
sions of these methods have been used to study coated,
perfectly conducting gratings [5]. Integral equation meth-
ods have also been used to study conducting transmission
and reflection gratings [6], [7]. Other rigorous methods
such as the modified residue calculus technique [8], [9]
have also been used extensively to treat perfectly con-
ducting gratings for a number of applications. More re-
cently, the FEM has been used to treat gratings composed
of thick conductors [10], and thick conductors embedded
in an inhomogeneous slab [11], [12]. The advantage of
using the FEM is that inhomogeneous dielectric or mag-
netic materials, as well as conductors of arbitrary cross-
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section can easily be modeled. However, the analyses
presented in [11] and [12] were limited to gratings com-
posed of perfect conductors embedded in an inhomoge-
neous slab, where it was assumed that the maximum pro-
file of the periodic conductors was in a constant plane and
that the material medium above or below the conductors
was homogeneous.

It is the intent of this paper to study gratings that are
composed mostly, or entirely, of penetrable materials us-
ing a combined FEM/MoM algorithm based on the gen-
eralized network formulation [12], [13]. With the use of
equivalent currents, the problem domain is divided into
three regions: 1 and 2) the exterior homogeneous regions
above and below the grating, and 3) the inhomogeneous
interior region. The fields in the exterior region are for-
mulated using the method of moments. In the interior re-
gion, the fields perturbed by the equivalent currents are
computed using the FEM. In order to truncate this region
such that it can be modeled using finite elements, an exact
periodic boundary condition is introduced. This boundary
condition is enforced as a natural boundary condition, and
preserves the sparsity of the finite element matrix. The
method provided herein is more robust than the methods
presented in [11], [12], and is capable of treating a much
larger class of grating problems.

II. GENERAL FORMULATION

The grating to be studied is assumed to be planar (i.e.,
the dimension of periodicity is along a Cartesian coordi-
nate axis), composed of isotropic dielectric or magnetic

-materials (lossless or lossy), and it also may have con-

ducting materials embedded within it (see Fig. 1). The
material profile is assumed to be inhomogeneous in the
region contained between the y = 0 and the y = —d
planes. Above the y = 0 plane, the medium is homoge-
neous with material constants (e4, u,), and similarly, be-
low the y = —d plane, the medium is homogeneous with
material constants (eg, up). In addition, the profile of the
grating is considered invariant along the longitudinal
z-direction. Therefore, if the grating is illuminated by a
monochromatic plane wave which has no z-variation, the
TE- and TM-polarized fields completely decouple and can
be treated independently.

This problem is analyzed numerically using the gener-
alized network formulation, [12], [13]. The problem space
is divided into three regions: the homogeneous half-spaces
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Fig. 1. Inhomogeneous material grating of unit cell width b illuminated by
a TE- or TM-polarized monochromatic plane wave.
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Fig. 2. Equivalent currents J, (for TM-polarized fields) or M, (for
TE-polarized fields) placed above and below the y = 0 and the y = —d
planes; shown here for a single unit cell of the grating.

y > 0, forming region A; y < —d, forming region B; and
the interior region C, which contains the periodic struc-
ture. The three regions are decoupled by the introduction
of equivalent currents which are periodically distributed
along x inthe y = 0 (T')) and the y = —d (I',) planes, as
illustrated in Fig. 2. Subsequently, these planes are re-
placed by PMC (for TM polarization) or PEC (for TE
polarization) planes. ;

If the grating is illuminated by a TM-polarized plane
wave, the total electric field in the exterior regions can be
expressed as

E®™ = E 4 E* )
where E7f is the short-circuited electric field due to the
PMC plane (i.e., a superposition of the incident field and
the specular reflection), and E3* is the scattered field pro-
duced by the periodic equivalent currents. To enforce the
continuity of the electric field across the T', and the T,
planes, E}" is treated as the electric field induced in the
interior region when it is excited by the equivalent current
sources. In the interior region, the field in the aperture
plane is expressed as

EY = EXN—J,) + EX(+J,): onT,
EY = EX(+J,) + ES(—J,): onT,. )

The electric field is then matched across the aperture
planes into the exterior region, resulting in

EY = ~E(+J,) + Eg(—J,) + ES(+J,): on T

SC
E;

1

—Ef(=J,) + ES(+J,) + ES(— 1): on I,.

3)

Floquet’s theorem states that given a plane wave inci-
dent on a periodic structure, all observable quantities will
have the same periodicity as the structure and will also
have a cell-to-cell phase shift equivalent to that of peri-
odic structure. This phase shift can be expressed as

J,(x + mb) = J,(x)esm )

where k, is the x-component of the incident field (k, = k
cos ¢') and & is the unit cell width. As a result, the fields
in (3) can be uniquely described by their distribution over
a single unit cell.

The solution of (3) is then obtained using the method
of moments. To this end, the equivalent currents J,; and
J, are expanded into a series of basis functions weighted
by unknown constant coefficients. Within a unit cell of
the structure, the approximate currents are expressed as

N P

J,®) = 2 k,B,(x); J,(x) = Zl ,B,(x).  (5)
i

A matrix expression is then derived through the inner
product of the functionals in (3), expressed as a function
of the approximate currents, and a set of testing functions
T; (on T'y) and T, (on I';). Making use of the linearity of
the operators, this inner product can be expressed as

=[5l ]
- Z 6
{ QJ { 0 (2% Hl Kp ©

where the matrix blocks [Z4] and [Z2] represent the ex-
terior and [Z €] represents the interior impedance matrices
of the surfaces I'; and T'; over a unit cell. For the
TE-polarized case, a dual expression can be derived

el gl wali] e
Hel Lo ol PR I

where [Y4] and [Y?] represent the exterior and [Y°] rep-
resents the interior admittance matrlces of the surfaces I
and I', over a unit cell.

III. CONSTRUCTING THE EXTERIOR IMPEDANCE
(ADMITTANCE) MATRICES

The exterior impedance matrices [Z*] and [Z?®] (or the
exterior admittance matrices [Y*] and [Y®]) are con-
structed through the inner product of the approximate
scattered field with the set of testing functions. The scat-
tered field can be expressed as a superposition of the fields
produced by the periodic distribution of equivalent cur-
rents. Therefore, using (4)

o b/2
, 1
scat = —ijk S 1N ikemb H(2)
E; (x, y) J??m;m x:_b/zz‘lz(x )e 4j o
. (k\f(x — x' — mb)* + (y — y’)z) dx’.
(8

From Poisson’s theorem [14], it can be shown that
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1
2 ¥ HYk|(x — x' — mb)|)
1 &1 ,
P Z JBxm(x —x")
bnite 2B, ®
where
2
Bam = —Z—m + k, (10
and
6 _ sz - fﬁm’ (kz > ﬁﬁm) (11)
VB - U < )
Using (9)-(11), (8) can then be expressed as
ik
gy = M3 B = &P (12)
b m=- Bym

where J,(B,,) is the Fourier transform of J,(x), and y =

The equivalent current is expanded into a set of triangle
functions, as in (5). The nth basis function centered about
X = x, is expressed as

|x — xnl
1 A s X, —A=sx=zx,+A
Bn(x) =
0, else
(13)
and has the Fourier transform

73 A .
Bn(ﬁxm) = A SlHCz <—6L’;-—~'>| e _Jﬁ\mxn' (14)

The distribution of N triangle functions spans one unit cell
of the I'| plane, as illustrated in Fig. 3, and P triangle
functions span one unit cell of the ', plane. The triangle
functions are assumed to be evenly distributed and each
has a half-width of A (this is not a necessary condition,
but it is assumed for computational efficiency). It is ob-
served that the basis function centered about x = x’ over-
laps into the adjacent cell. This function is referred to as
the continuity basis function, and ensures the continuity
of the fields across the planes separating the unit cells.

The testing functions are chosen to be identical to the
basis functions. By making use of (12), the k, nth term
of the exterior impedance matrices [Z*] and [Z?] can be
computed by the inner product

*x

k 1
( 7k Escat> = TI Z _'B;ck(ﬁxm)Bn(me)

b m=—o By,
kp A 21 A
= nb m_Z:m Ey-';smc <———x§ >

e =7 Bem(xn — xi)

(15)

where k is the wave number, % is the characteristic wave
impedance of the half-space, and 8,,, and §,,, are defined
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Fig. 3. Triangular basis functions spanning {x € (x*, x' + b)} on T';. The
continuity basis function overlaps into the adjacent unit cell.

by (10) and (11). Equation (15) represents a TM-polarized
incident wave. By duality, for a TE-polarized incident
wave, the k, nth term of the exterior admittance matrices
[Y*] or [Y®] can be computed from the inner product

oo

Scal kAz 1 xXm
—(Ty, HZ™) —n—bmzmasmc < 5 >

e j Bxm(xn — Xl\)' (16)
These series converge rapidly, since the summand decays
asymptotically as 1/m>. For this choice of basis func-
tions, the summands of the series in (15) and (16) are
dependent only upon the separation between the centers
of the nth and the kth basis functions. Since the basis
functions have been uniformly distributed, (x, — x,) =
A(n — k). As a result, the entire admittance or impedance
matrix can be constructed by only computing the elements
of the first row of the matrix. This reduces the computa-
tional task from N? processes to N.

IV. INCORPORATING THE PERIODIC BOUNDARY
ConNDITION TO CONSTRUCT THE INTERIOR IMPEDANCE
(ADMITTANCE) MATRIX

The interior impedance (admittance) matrix is con-
structed by perturbing the interior region (—d < y < 0)
with each of the equivalent current basis functions, fol-
lowed by the inner product of the induced aperture fields
and a set of testing functions. Computation of the fields
within the interior region using the FEM is the desired
objective. However, the problem domain is not confined
to a close region, as it was for the problems considered in
[11], [12]. Rather, it spans the entire space {x € [—oo,
+0]}. By taking advantage of the periodicity of the
problem, a periodic boundary condition can be introduced
that confines the problem domain to the unit cell. This is
presented in this section.

Define the domain Q' to be the domain of a single unit
cell of the periodic structure

{Q: xe@x, x' + b),ye(—d, 0}. {a7n

The unit cell domain is bound by the contour I'’, which
includes the surfaces of any nonpenetrable conducting
material I'p, the I'] and I'; planes, and the periodic bound-
aries I'; and Ty, as illustrated in Fig. 4. It is noted that
even though the boundaries I'; and I'; are assumed to be
planar, this is not a necessary condition, and in fact, the
side boundaries of the unit cell may be nonplanar.
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Fig. 4. The unit cell domain Q', enclosed by the contour I'' =T} + '} +
I'y + T, + Tp.

The fields within Q' must satisfy the scalar Helmholtz
wave equation

V- Miw + ko =0 @
where ¢ = E;* for TM-polarized fields, with a dual
expression applicable for TE-polarized fields. In the above
expression, it is assumed that €, and p, have a spatial vari-
ation. Following the Galerkin method, the inner product
(defined over the domain ') of (18) with a testing func-
tion ® results in the expression

(18)

SS [@*v . iw + e,k%‘b*tﬁ} aQ’ =0. (19
0 Br

The unit cell domain Q' is then partitioned into N, ele-
ment domains (1,, and within each element domain,
Y(span 1,) = ¢, and ®(span Q,) = ®,. As a result, (19)
is expressed as a superposition of inner products within
all the element domains 2, as

Ne
2 S [cpj‘v . “lwe + e,ki@f\ﬁg} daQ, = 0. (20)
r

e=1 Q

Implementing the first form of Green’s theorem leads to

N, 1
2 US [— VeF - vy, — e,kﬁ@j‘x/xe} daqQ,
Qe

e=1 Wr

Te Wy on

where T', is the contour enclosing the element domain £,
and » is along the direction of the outward normal at po-
sition / on I',. Equation (21) is the discretized form of the
weak form equation.

21

To this point, the field and the testing functions have '

been assumed to be arbitrary. However, for a valid solu-
tioni of (21) both functions must belong to the functional
space

A= {YlYeC% Y + mb,y) = Y, e, (22)

Due to the periodic nature of the source, the functional

space is assumed to be composed of fields that have pe-
riodic distributions along the x-direction with a cell-to-

cell phase shift of e/, as specified by (4). However, from
Floquet’s theorem, all observable quantities have this
phase shift. Therefore, the dual field is also periodic and
from Maxwell’s curl equation it can be stated that

AX VY@ + mb,y) =/ X V', yyerm (23)

Maxwell’s equations require that the tangential com-
ponents of the electric and magnetic fields must be con-
tinuous across all boundaries. The scalar ¥ represents the
tangential component of the electric (or magnetic) field
and is continuous across all boundaries from (22). The
continuity of the tangential component of the electric (or
magnetic) field is enforced in a weak sense by setting the
line integral appearing in (21) to zero when I', is a bound-
ary shared between two element domains. Nonshared
boundaries lie on the boundary I'’, which encloses the unit
cell domain '. As a result, (21) can be expressed as

Ne

1
% US [— Ve - VY, - erkicﬁwe] dsze}
e=1 Q LHr

Np

2 S — &} ALY
b=1 r K an

where ¥, C {{,} and ®, C {®,}, and N, is the number
of element domains with edges on I'’. For TM-polarized
fields, the Dirichlet boundary condition = 0 is enforced
on the surface of a PEC, and the Neumann boundary con-
dition 8y /dn = 0 is satisfied in a weak sense on a PMC.
For TE-polarized fields, a Neumann boundary condition
is satisfied in a weak sense on the surface of a PEC.
Therefore, on the boundaries '} and I'5, the contribution
of the integral is zero, except in the presence of the equ1v—
alent current source, where

Y /on = joud, (or 0y /dn = jweM,)

for TM (or TE) polarization.

It still remains to evaluate the contour integration over
the periodic boundaries I'; and I's. The periodic bounda-
ries which truncate the problem domain to a single unit
cell can be thought of as boundaries separating adjacent
unit cells. However, since the electric and magnetic fields
must be continuous across these boundaries, the contri-
bution of the line integral over I'; and I'y must be zero.
This can be shown explicitly by exploiting the periodic
nature of the fields.

The line integral over I'; and Ty is expressed as

24

23)

1
— ®*f X Vi diy
Tr Yy

1
S — ®*7 X VY dlp + S

Ty iy

(26)

where 7 is the outward normal on I'; and I'p. Therefore,
from (22) and (23), respectively, it can be stated that

P*(x’ + b, Y|r, = P*E, ye O, @7
and
A X V' + b, Y)|r, = # X V&' + b, y)e?|p,
(28)
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Inserting the expressions in (27) and (28) into (26) and
choosing the appropriate normal vectors, this results in a
natural boundary condition

1
S lfI>*ﬁ><Vz,[/a'lL-l—s — &% X VY dlp =0
I'. Mfr I'r

r

(29)

Physically, (29) implies that the electric and magnetic
fields are continuous across the periodic boundaries from
unit cell to unit cell. It also implies that the total time-
average power leaving the unit cell along the periodic
boundaries is zero. Furthermore, it satisfies the periodic
boundary condition of the electric and magnetic fields in
a weak sense. However, since y must satisfy the periodic
boundary condition in a strict sense, it is still necessary
to enforce (27) and the periodic condition in (22) as Dir-
ichlet boundary conditions in (24).

The fields within each element domain are then ex-
panded into trial functions weighted by unknown coeffi-
cients, with the simplest being first-order nodal elements
(linear interpolate functions), where

3, = Z. Uoh, and ¥, = 20 u,\,. (30)
i= 1=1

Employing a global numbering scheme by enforcing the
continuity of the fields across shared boundaries, (25) is

expressed as a linear operator

Aii AiL AIR ui

(Ui, vL’ ZJR)H ALi\ ALL 0 uL
ARi 0 ARR uR
J:
— @, v v T =0 @31
J?

where u' is the vector of constant coefficients weighting
the interior nodal elements (including I'; and I',), @wHis
the transpose conjugate of ', and u” and u* are the vec-
tors of the constant weighting coeflicients of the nodes
lying on I'; and I'g, respectively. From the periodic
boundary conditions,

R Ly jkeb

uk =y (32)

and

(UR)H — (UL)He —jkyb' (33)
Equations (32) and (33) are then enforced in a strict sense
in (31).

The solution of the weak form equation is then found
by evaluating the first variation of the linear functional
with respect to {¢} at a stationary point. This results in

the sparse linear system of equations:

Ali AiL +A1Re+jk,rb ui
ALi+ARie—jkcb ALL +ARR uL

[
\JL + JRe-kt )

On the right-hand side of this expression, J. is a vector
computed via the contour integral in (25) and is only non-
zero in the planes I'{ and I') when the edge of an interior
nodal element, corresponding to node (vHH, overlaps the
support of the equivalent current basis function. A similar
statement can be made for J% and JX.

Equation (34) is a sparse linear system of equations. If
the material medium within  is lossless, then the sparse
matrix is Hermitian. Exploiting this property leads to a
savings in computational time and storage, and also re-
sults in a more stable factorization of the matrix. If the
material medium is lossy, the matrix is nonHermitian,
however, savings in computational time and storage can
still be realized by taking advantage of the symmetry of
the large matrix block 4"

The equivalent basis function set within a unit cell is
given by (13) and is illustrated in Fig. 3. The interior
region is perturbed by each basis function, and the fields
within a single unit cell are solved using (34). Since only
the right-hand side is changed by the excitation, the sparse
matrix may be computed and factored once. Subse-
quently, the fields within Q' can be derived for each
equivalent current basis function, and the impedance ma-
trix [Z€] (or admittance matrix [Y]) can be constructed.

(34

V. NUMERICAL RESULTS

The previous algorithm has been incorporated into a
computer program for the Convex C240 computer. First-
order nodal elements were used to model the scalar elec-
tric or magnetic field within the cavity region. Typically,
400 elements per \* were used. The sparse linear system
of equations representing the interior problem was solved
using the YSMP package {15], which is based on the min-
imum-degree ordering algorithm. It is noted that by in-
corporating the periodic boundary condition into (31), ad-
ditional coupling between elements is encountered.
However, this had little effect on the time required to fac-
torize the matrix. The equivalent current basis function
set that was used is the triangular basis set in (13). Ap-
proximately eight basis functions per A over the exterior
surfaces of a unit cell are necessary for convergence to an
accurate solution. The aperture impedance (or admit-
tance) matrices are then constructed, resulting in a small
dense linear system of equations.

Once the approximate equivalent currents are com-
puted, the time-averaged reflected and transmitted powers
normal to the plane of the grating of the mth harmonic are
computed. The accuracy of the approximate solution can
be verified by the conservation of power. This is a nec-
essary condition, but not sufficient. Nevertheless, once
the code is validated, it provides confidence in the ap-
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-

Fig. 5. Thick PEC grating embedded in a dielectric slab.

proximate solution when treating a noncanonical prob-
lem.

For validation purposes, the case of the scattering by a
thick strip grating is first studied. Consider the thick PEC
grating illustrated in Fig. 5. The grating is assumed to be
embedded in a dielectric slab, with a thickness greater
than that of the PEC grating. The material medium above
and below the slab is assumed to be free space. Initially,
the relative permittivity of the dielectric slab is chosen to
be one, such that the PEC grating is effectively situated
in free space. This problem was also studied by Gedney
and Mitta in [12]. Fig. 6 illustrates the normalized re-
flected powers of the propagating harmonics versus fre-
quency (represented as b/\,) when the PEC grating is
illuminated by a normally incident TM-polarized plane
wave. (The normalized power is the time-averaged power
in the normal direction of the mth harmonic normalized
by the normal time-averaged power of the incident field.)
The grating has a unit cell width » and a separation of
a = 0.6 b between the PEC cylinders of thickness d =
0.4 b. The T'; and I'; planes are placed a distance of 0.1
b above and below the PEC surface. In the problem, re-
sults were computed using the current method and were
compared with those computed via the method presented
in [12], which places the I'; and I'; on the surface of the
PEC conductors: These results compare extremely well
for all the propagating harmonics. The results were also
verified for other angles of incidence and for the
TE-polarized case, establishing confidence in the method
and the computer code.

Next, the case in which the thick PEC grating is situ-
ated in a homogeneous dielectric slab is considered. For
the case when e, = 2.56, Figs. 7 and 8 illustrate the nor-
malized reflected and transmitted powers, respectively,
when the grating is illuminated by a normally incident
TM-polarized plane wave. The dimensions of the con-
ductors are the same as those considered in the previous
case. The grating is almost purely reflecting at low fre-
quencies (i.e., when the unit cell width is small compared
to a wavelength). However, due to the presence of the
dielectric slab, the surface becomes highly transmitting at
a frequency well below the first Wood’s anomaly, which
occurs when b /X, = 1.0. Since the TM,; , mode does not
propagate, if the slab is removed, this transition will take
place at the Wood’s anomaly, as is observed in Fig. 6.

The problem illustrated in Fig. 5 can also be considered
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Fig. 6. Normalized power due to a TM-polarized incident plane wave on
a thick grating (¢’ = 90°, ¢, =1.0,d =0.4b,a=0.6b,h =h, =0.1
b). Case a: P,,, computed via FEM/MoM method outlined in [12]; Case b:
P,,, computed via present method; Case c: P, computed via method out-
lined in [12]; Case d: P,,, computed via present method.
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Fig. 7. Normalized reflected power due to a TM-polarized incident plane
wave on a thick grating (¢’ = 90°, ¢, = 2.56,d = 0.4 b,a = 0.6 b, h,
=h, =0.1b).
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Fig. 9. PEC cross grating imbedded in a homogeneous dielectric siab.

using the method presented in [12], assuming that the di-
electric slab is homogeneous above and below the con-
ductors. In order to treat this problem, the Green’s func-
tion can be readily expressed in the spectral domain.
However, special attention must be given to the branch-
point singularities that are inherent to this Green’s func-
tion when performing the numerical integration. The ad-
vantage of treating the problem using the current method
is that the exterior problem can be assumed to be a ho-
mogeneous half—spdce The Green’s function is easily
handled here and is more computationally efficient. Fur-
thermore, the case of an ihhomogeneous slab above or
below the conductors can easily be studied using-the cur-
rent method.

With the use of the finite elements, the conductors can
be of arbitrary cross section such as the grating in Fig. 9,
which is composed of PEC crosses imbedded in a homo-
geneous dielectric slab. It is assumed that the slab has a
thickness d = 0.5 b, and a relative permittivity e, = 2.56.
The crosses have a height of 0.5 b, and a width of 0.5 b,
and the thickness of the arms is assumed to be 0.1 &. Figs:
10 and 11 illustrate the normalized reflected powers of the
propagating harmonics versus frequency when the cross
grating is illuminated by TM- and TE-polarized plane
waves, respectively, with angle of incidence ¢’ = 60°.

The second class of problems considered are dielectric
gratings that are composed entirely of perfect dielectrics.
Consider the grating illustrated in Fig. 12, which consists
of square dielectric rods with permittivity e, periodically
distributed within a planar dielectric slab of permittivity
¢;. The dielectric slab is assumed to be homogeneous with
permittivity ¢; = 2.0 ¢y. The normalized transmitted
power versus frequency (represented as b/\,) of this
grating illuminated by normally incident TM- and
TM-polarized plane waves is illustrated in Figs. 13 and
14, respectively. Initially consider case a., when the di-

electric rods have permittivities of e, = 2.4 ¢,. At low

frequencies, the response appears to be that of a homo-
geneous slab, and the grating is highly transmitting. How-
ever, due to the periodic distribution of the dielectric rods,
the grating becomes highly reflective within a small band
of frequencies. Due to the low contrast between the rods
and the slab, the bandwidth of these notches in the trans-
mitted power is extremely small, as illustrated in Figs. 13
and 14. Therefore, this grating is highly frequency-selec-
tive. Increasing the relative permittivity of the dielectric
rods results in the broadening of the bandwidth of the
notches in the transmitted power, as demonstrated by case
b., when e, = 4.0 ¢,. Here, it is observed that the band-
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Fig. 10. Normalized reflected power due to a cross grating illuminated by
a TM-polarized plane waves (¢, = 256 d=0.75b,t=0.1b,w=0.5
b, h =0.5b, ¢' = 60°).
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Fig. 11. Normalized reflected power due to a cross grating illuminated by
a TE-polarized plane wave (¢, = 2.56,d = 0.75b,¢t = 0.1b,w = 0.5 b,
h=05b,¢" = 60°).
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Fig. 12. Dielectric slab grating.

1.0 4

0.8 4

Case a.

0.6 4 Case b.

m

&7 04 ]

0.2
™
0.0 T T T
0.2 04 " 06 0.8 1.0
b/4,
Fig. 13. Normalized transmitted power due to a dielectric slab grating il-

luminated by a TM-polarized plane wave (¢, = 2.0 ¢,, ¢’ = 90°). Case a:
e =2.4¢, Caseb:e, = 4.0¢,.

widths of the regions of high reflectivity have broadened.
Furthermore, by increasing the contrast between the two
dielectrics, the frequencies at which the surface becomes
almost totally reflecting are lowered, and additional bands
are introduced before the first resonance of the periodic
structure.
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Fig. 14. Normalized transmitted power due to a dielectric slab grating il-
luminated by a TE-polarized plane wave (¢, = 2.0 ¢,, ¢/ = 90°). Case a:
€ =24¢, Caseb: e, = 4.0¢,.

VI. SUMMARY

This paper has focused on the numerical anlysis of the
diffraction of electromagnetic plane waves by arbitrary
gratings. The gratings are assumed to be composed of in-
homogeneous isotropic diclectric or magnetic materials,
which may have conducting materials periodically distrib-
uted within them. The numerical method employed for
the analysis was the combined FEM/MoM solution, which
is based on the generalized network formulation. Due to
the properties of the grating, the interior cavity region is
infinite in extent. However, with the introduction of a pe-
riodic boundary condition, the interior problem domain
was reduced to that of a single unit cell. The advantage
of this formulation is that the sparsity of the interior finite
element matrix is preserved, and with the use of direct
methods of solution, the construction of the interior
impedance (admittance) matrices can be performed quite
efficiently.

A number of examples of gratings composed of piece-
wise homogeneous materials were presented in order to
validate the method and to illustrate the types of problems
that can be treated with this method. However, due to the
robustness of the combined FEM/MoM solution, many
other classes of problems may be considered. For exam-
ple, problems for which the profile of the material con-
stants and/or the surface profile of the grating are modu-
lated is of great interest and can be studied using this
method. Furthermore, gratings with higher degrees of in-
homogeneity can also be studied with little additional
computational cost.
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